Sulfate Generation - Cell 2W Fine

Material used in unsaturated zone: LTVSMC coarse tailings

$K_{s} := 1.1 \cdot 10^{-4} \cdot \frac{cm}{cm}$	Saturated hydraulic conductivity of LTV fine (Table 1-12b)		
n := 1.6	vanGenuchten parameter for LTV fine (Table 1-12a)		
$\theta_{r} := 0.059$	Residual volumetric water content for LTV fine (Table 1-12a)		
φ := 0.493	Porosity of LTV fine (Table 1-12a)		
G:= 2.9	Specfic gravity of LTV fine solids (Table 1-12a)		
$\rho_{\mathbf{W}} \coloneqq 1 \cdot \frac{gm}{cm^3}$	Water density (standard value)		
$A := 3027344 \cdot m^2$	Map area of Cell 2E embankment (Table 1-33)	A = 748.073 · acre	
$q := 15.93 \cdot \frac{in}{vr}$	Percolation flux (from Fred's seepage spreadsheet with CDA edits)		
$\tau := 0.273$	Tortuosity (Table 1-1, sheet 5)		
$D_a := 1.8 \cdot 10^{-5} \cdot \frac{m^2}{\text{sec}}$	Free diffusion coefficient of oxygen in air (Table 1-1, sheet 5)		
c := 3.28	Empirical constant (Table 1-1, sheet 5)		
$D_{\rm W} \coloneqq 2.2 \cdot 10^{-9} \cdot \frac{{\rm m}^2}{\rm sec}$	Free difussion coeff of oxygen in water (Table 1-1, sheet 5)		
K _H := 33.9	Henry's constant for oxygen (Table 1-1, sheet 5)		
$C_0 := 8.89 \cdot \frac{\text{mol}}{\text{m}^3}$	O2 concentration in air (Table 1-1, sheet 5)		
$W_{SO4} := 96.07 \cdot \frac{gm}{mole}$	Molecular weight of sulfate (standard value)		
$W_{S} := 32.066 \cdot \frac{gm}{mole}$	Molecular weight of sulfur (standard value)		
$R_{\text{SO4}} := 1.95186 \cdot \frac{\text{mg}}{\text{kg} \cdot 7 \cdot \text{day}}$	P50 SO4 distribution paramater for LTVSMC tailings (Table 1-19)		
$CF_{fine} \coloneqq 0.360$	Calibration factor for LTV coarse tailings (Table 1-1, sheet 5)		
TF := 0.228589	Temperature factor (computed in GS using numerous inputs)		
$FF := \frac{3.4}{12}$	Freeze factor (from Table 1-1, sheet 3)	FF = 0.28333	
moleratio := $\frac{4}{9}$	mole SO4 / mole O2 = mole S / mole O2 (Table 1-1, sheet 6)	moleratio = 0.444	
$DTW := 85.5 \cdot ft$	Depth to water table in cell 2E during closure (value in Table 1-34 is 51.0 ft; GS value used in calcs is 52.3 ft)	$DTW = 26.06 \mathrm{m}$	
$\operatorname{Cont}_{\mathbf{S}} := 46.1 \cdot \frac{\mathrm{mg}}{\mathrm{kg}}$	Sulfur content. Mass of S per unit mass of LT (Table 1-22)	V tailings.	

$\rho_b \coloneqq G \cdot \rho_W \cdot (1 - \phi)$	Tailings dry bulk density. Mass of solids per unit bulk volume.	$\rho_{\rm b} = 1.47 \cdot \frac{\rm gm}{\rm cm}^3$
$\operatorname{mm} := 1 - \frac{1}{n}$	Computed vanGenuchten parameter	mm = 0.375
$K(ss) := K_{s} \left(\frac{ss \cdot \phi - \theta_{r}}{\phi - \theta_{r}} \right)^{0.5} \left[1 - \left[1 - \left(\frac{ss \cdot \phi - \theta_{r}}{\phi - \theta_{r}} \right)^{0.5} \right] \right]^{0.5} \left[1 - \left[1 - \left(\frac{ss \cdot \phi - \theta_{r}}{\phi - \theta_{r}} \right)^{0.5} \right]^{0.5} \right] \right]$	$\frac{1}{\left(\frac{1}{\varphi - \theta_{r}}\right)^{mm}} \int_{r}^{mm} \int_{r}^{mm} \left[\int_{r}^{2} \frac{1}{\varphi - \theta_{r}} \frac{1}{\varphi - \theta_{r}} \right]_{r}^{mm}$ Unsaturated hydraulic contained as a function of saturation on vanGenuchten relation	nductivity n (ss) based nship
$f(ss) := q - K(ss) \qquad ss := 0.6$	Root equation and saturation guess	
SAT := root(f(ss), ss)	Computed saturation associated with flux (q)	SAT = 0.6741
$q - K(SAT) = 1.195 \times 10^{-6} \cdot \frac{in}{yr}$	Confirm root calculation (result should be approx zero)	0.6741
$DD := \tau \cdot D_a \cdot (1 - SAT)^c + \tau \cdot SAT \cdot \frac{D_w}{K_H}$	Effective O2 diffusion coeff used in GS. I believe this diffusion coeff is referenced to void volume,	$DD = 1.243 \times 10^{-7} \frac{\text{m}^2}{\text{s}}$
$\mathbf{D} \coloneqq \tau \cdot \boldsymbol{\phi} \cdot \mathbf{D}_{a} \cdot (1 - \mathbf{SAT})^{c} + \tau \cdot \boldsymbol{\phi} \cdot \mathbf{SAT} \cdot \frac{\mathbf{D}_{w}}{\mathbf{K}_{H}}$	Effective O2 diffusion coeff referenced to bulk volume	$D = 6.127 \times 10^{-8} \frac{m^2}{s}$
$MRM_{SO4} := R_{SO4} \cdot CF_{fine} \cdot TF \cdot (1 - FF)$	Mass rate of released SO4 per unit mass of tailings solids	$R_{SO4} = 1.952 \cdot \frac{mg}{kg \cdot 7 \cdot day}$
	Effect of three factors CF _{fi}	$\operatorname{re} \operatorname{TF} (1 - \operatorname{FF}) = 0.059$
$R_{O2} := \frac{MRM_{SO4}}{W_{SO4} \cdot moleratio} \cdot \rho_{b}$	Molar consumption rate of O2 per unit volume of bulk tailings. (see ERM comment on this equation)	$R_{O2} = 0.00396 \cdot \frac{\text{mol}}{\text{m}^3 \cdot 7 \cdot \text{day}}$
$d := \sqrt{\frac{2 \cdot D \cdot C_0}{R_{O2}}}$	Thickness of sulfate reaction zone if controlled by diffusion	d = 12.892 m
b := min(d, DTW)	Actual thickness of sulfate reaction zone. Minimum of diffusion controlled reaction zone or depth-to-water.	b = 12.892 m
$MR_{SO4} := MRM_{SO4} \cdot b \cdot A \cdot \rho_b$	Mass rate of released sulfate	$MR_{SO4} = 943.666 \cdot \frac{\text{kg}}{\text{day}}$
$MRV_S := R_{O2} \cdot W_S \cdot moleratio$	Mass rate of released S per unit bulk volume	MRV _S = 9.341 × 10 ⁻¹¹ $\frac{\text{kg}}{\text{m}^3 \cdot \text{s}}$
$MRA_S := MRV_S \cdot b$	Mass rate of released S M per unit map area (m ²)	$MRA_{S} = 728.302 \cdot \frac{mg}{m^{2} \cdot 7 \cdot day}$ 727.95
$Q_{seep} := q \cdot A$	Seepage flow rate	$Q_{seep} = 615.254 \cdot gpm$

$$Co_{SO4} := \frac{MR_{SO4}}{Q_{seep}}$$
Sulfate concentration in seepage $Co_{SO4} = 281 \cdot \frac{mg}{liter}$ $t_{end} := \frac{Cont_S \cdot \rho_b}{MRV_S} \cdot \frac{DTW}{b}$ Time to deplete all sulfur in the reaction
zone if composed of LTVSMC tailings. $t_{end} = 46 \cdot yr$ $V_w := SAT \cdot \phi \cdot A \cdot DTW$ Water volume in unsat zone $V_w = 2.622 \times 10^7 \cdot m^3$

Set up dimensionless equations using m-kg-day units

$$tt_{end} := \frac{t_{end}}{day}$$
End of sulfate generation in days
$$tt_{end} = 1.698 \times 10^{4}$$
$$MR := \frac{MR_{SO4}}{kg \cdot day^{-1}}$$
Mass rate of sulfate generation in kg/day MR = 943.666
$$M(t) := MR \text{ if } t < tt_{end}$$
Sultate mass generation function

 $M(t) := \begin{bmatrix} MR & \text{if } t < tt_{end} \\ 0 & \text{otherwise} \end{bmatrix}$

Water volume in m³
$$V = 2.622 \times 10^7$$

Seepage flow rate in m³/day $Q = 3.354 \times 10^3$

Initial sulfate conc in kg/m³

 $\mathbf{W} \coloneqq \frac{\mathbf{V}_{\mathbf{W}}}{\mathbf{m}^3}$

 $Q \coloneqq \frac{Q_{seep}}{m^3 \cdot day^{-1}}$

 $Co := \frac{Co_{SO4}}{kg \cdot m^{-3}}$

Given $\frac{d}{dt}C(t) = \frac{M(t) - Q \cdot C(t)}{V}$ C(0) = Co C(t) = Co Compared Compa

 $C_{SO4}(tt) := C\left(\frac{tt}{day}\right) \cdot kg \cdot m^{-3}$

$$\mathsf{tt} \coloneqq 0, 1 \cdot \mathsf{yr}..\ 100 \cdot \mathsf{yr}$$

Sulfate conc as a function of time

Co = 0.281

Governing DEQ and IC

